

Solar Screen International S.A. Rue du Commerce 18 3895 FOETZ Luxembourg

Your notice of 07-05-2020

Your reference SSIBCC 2003643 REACH Date 18-06-2020

Analysis Report 20.02717.01

Required tests : Centexbel Centexbel Centexbel Centexbel Determination of the elemental composition (screening) Analysis of an extract with FTIR Determination of the composition using XRF-screening Determination of the limited FR products (REACH Annex XVII + SVHC) LCMS screening (Reach SVHC) Determination of the emission profile by thermal extraction.

Centexbel Centexbel

Identification number	Information given by the client	Date of receipt
T2009895	U19	07-05-2020

> Lengerout

Stijn Steuperaert Order responsible

This report may be reproduced, as long as it is presented in its entire form, without written permission of Centexbel. The results of the analysis cover the received samples. Centexbel is not responsible for the representativeness of the samples. In assessing compliance with the specifications, we did not take into account the uncertainty on the test results.

CENTEXBEL • textile competence centre • www.centexbel.be • www.vkc.be

GENT • Technologiepark 70 • BE-9052 Zwijnaarde, Belgium • phone +32 9 220 41 51 • fax +32 9 220 49 55 • gent@centexbel.be GRÂCE-HOLLOGNE • Rue du Travail 5 • BE-4460 Grâce-Hollogne, Belgium • phone +32 4 296 82 00 • g-h@centexbel.be KORTRIJK • Etienne Sabbelaan 49 • BE-8500 Kortrijk, Belgium • phone +32 56 29 27 00 • fax +32 56 29 27 01 • info@vkc.be VAT BE 0459.218.289 • IBAN BE44 2100 4729 6545 • BIC GEBABEBB

Analysis Report 20.02717.01 Date 18-06-2020 Page 2/13

Reference: T2009895 - U19

Reach SVHC conclusion

The results for the analysis on specific elements and substances show that the sample does not contain any of the compounds mentioned on the Reach candidate list of 16-01-2020 (substances of very high concern), in concentrations > 0.1 mass%. Due to the presence of a significant amount of boron it can not be fully guaranteed that the boron containing substances of the list are below 0.1%.

f

0)

B (boron)

Determination of the	elemental composition	(screening)	
Date of ending the test Standard used	t 04-06-2020 Centexbel	0	
Sample preparation Determination	Mineraliza ICP-OES c with 1-poin	tion using concentrated quantitative measureme nt calibration	acids in a microwave. nt of specified elements
Results			
Determination of	B (boron)		
Metals	Reporting limit	Concentration	

The result of the Boron determination indicates compounds* of the REACH SVHC list (16-01-2020) may be present in the samples in concentrations >0.1 %

mg/kg

854

An analysis using an electron microscope showed that no glass fibre reinforcement is present. Glass fibres are a common source of Boron.

*boric acid, disodium tetraborate- anhydrous; tetraboron disodium heptaoxide- hydrate, diboron trioxide, sodiumperoxometaborate, sodiumperborate, disodium octaborate

mg/kg

20.0

O

Analysis of an extract with FTIR

Date of ending the test	18-06-2020
Method used	Centexbel
Apparatus	Nicolet 6700
Method	Dissolved in a solvent and dried on KBr-discs
Question	Identification of perborate or boric acid possible?

Results and interpretation

- Determination of a diethylether and MeOH-extract by IR reflection:

An extraction with diethylether and methanol was performed.

No perborate or boric acid is observed. The obtained spectra correspond to a plasticizer such as DOTP while also acrylates (glue) and silicones are present.

O

Reference: T2009895_01s - U19_Top & bottom

Determination of the composition using XRF-screening

Date of ending the test Method used	02-06-2020 Centexbel
Sample preparation	Cutting, weighing + determination of thickness, presentation under vacuum
Determination	X-rays fluorescence. Screening of the elements from sodium (11) up to uranium (92) using an EDX detector. Semi- quantitative measurements are performed using UniQuant.
Results	

Reporting limit (mass %)

Matrix

	design side	adhesive back side
Element	Mass %	Mass %
As	≤ 0.010	≤ 0.010
Co	≤ 0.010	≤ 0.010
Cr	≤ 0.010	≤ 0.010
Pb	≤ 0.010	≤ 0.010
Sn	0.019	0.020
Br	3.0	6.0
Zr	≤ 0.010	≤ 0.010
Al	≤ 0.010	1.9
Si	≤ 0.010	≤ 0.010
Cd	≤ 0.010	≤ 0.010

0.01 PVC

Px=phosphor; Sx=sulphur

Specific screening for elements indicating possible presence of Reach SVHC compounds (16-01-2020*

Presence of very significant amount of Br. A quantitative test is necessary to be sure bromine containing flame retardants on the * list are <0.1. The results for the other specific elements show that the sample does not contain the other (mainly inorganic) compounds* on the Reach candidate list (substances of very high concern), in concentrations >0.1 mass%.

* diarsenic tri- et pentoxide, arsenic acid, calcium arsenate, leadhydrogenarsenate, triethylarsenate, cobaltdiacetate, cobaltsulphate,

cobaltdichloride, cobaltcarbonate, cobaltdinitrate, cadmium, cadmium oxide, cadmium chloride, cadmium sulphide, cadmium fluoride, cadmium sulphate, cadmium nitrate, cadmium hydroxide, cadmium carbonate, potassium chromate and dichromate , sodium chromate and dichromate, chromiumtrioxide, ammoniumdichromate, strontiumchromate, , chromic and dichromic acid, oligomers of chromic and dichromic acid, pentazincchromate octahydroxide, dichromium tris(chromate), potassium hydroxyoctaoxodizincatedichromate, lead, lead chromate and pigments based on lead chromate, Orange lead (lead tetroxide), Pyrochlore antimony lead yellow, Lead monoxide, Trilead bis(carbonate)dihydroxide, leaddinitrate

leadoxidesulfate, Lead titanium trioxide, Silicic acid, lead salt, Lead titanium zirconium oxide, Pentalead tetraoxide sulphate, Trilead dioxide phosphonate, Tetralead trioxide sulphate, Lead bis(tetrafluoroborate), Tetraethyllead, Leaddiazide - leadazide, leaddipicrate, leadstyphnate, Lead

Q.

cyanamidate, [Phthalato(2-)]dioxotrilead, Dioxobis(stearato)trilead, Acetic acid lead salt(basic), C16-C18 fatty acid lead salts, Sulfurous acid lead salt (dibasic), Lead(II) bis(methanesulfonate), Lead di (acetate), HBCDD, DecaBDE, bistributyltinoxide, dibutyltindichloride, aluminosilicate, silicic acid barium salt (lead doped), refractory ceramic fibres, zirconia aluminosilicate refractory ceramic fibres, trixylyl phosphate, 2-ethylhexyl 10-ethyl-4,4-dioctyl-7-oxo-8-oxa-3,5-dithia-4-stannatetradecanoate (DOTE), 2-ethylhexyl 10-ethyl-4-[[2-[(2-ethylhexyl)oxy]-2-oxoethyl]thio]-4-octyl-7-oxo-8-oxa-3,5-dithia-4-stannatetradecanoate (MOTE)

Determination of the limited FR products (REACH Annex XVII + SVHC)

50 mg/kg

Date of ending the test	09-06-2020
Standard used	Centexbel
Deviation from the standard Extraction method Separation and detection Components	- Ultrasonic extraction with toluene/methanol APPI-LC/MS/MS PentaBDE (pentabromodiphenylether), OctaBDE (Octabromodiphenylether), PBB (polybrominated biphenyls), TRIS (Tris-(2,3-dibrompropyl)phosphate), TEPA (triaziridinylphosphine oxide), TCeP (Tris(2- chloroethylphosphate), TXP (Trixylylphosphate), DecaBDE (Decabromodiphenylether), HBCDD (Hexabromocyclododecane)

Results Determination limit

Compound	C (mg/kg)
PentaBDE	< 50.00
OctaBDE	< 50.00
PBB	< 50.00
TRIS	< 50.00
TEPA	< 50.00
HBCDD	< 50.00
TCEP	< 50.00
DecaBDE	< 50.00
TXP	< 50.00

in f

0

LCMS screening (Reach SVHC)

Date of ending the test Standard used Extraction method

Analytical method

02-06-2020 Centexbel Methanol/DMSO ultrasonic extract LC-MS

Results Reporting limit

See table

The method is used to screen for the presence of organic REACH SVHC compounds (16-01-2020)*.

The results for the specific substances show that the sample does not contain the (mainly organic) compounds* on the Reach candidate list (substances of very high concern), in concentrations >0.1 mass%.

* 4-nonylphenols (branched+linear) (NP), Tris(4-nonylphenyl, branched and linear) phosphite (TNPP) with ≥ 0.1% w/w of 4-nonylphenol, branched and linear (4-NP), 4-nonylphenols (branched+linear) ethoxylated (NPEO), 4-(1,1,3,3-tetramethylbutyl)phenol (OP), 4-(1,1,3,3tetramethylbutyl)phenol ethoxylated (OPEO), Heptylphenol (branched + linear) (HP), RP-HP (with >=0.1% w/w 4-heptylphenol, branched and linear), 4-tert-butylphenol (pTBP), Bisphenol A (BPA), p-(1,1,- dimethylpropyl)phenol (PTAP), Pentadecafluorooctanoic acid (PFOA), (C9-C14) perfluorocarboxylicacids (PFA's), Pefluorononanoic acid (+Na and NH4 salts) (PFNA), Pefluorodecanoic acid (+Na and NH4 salts) (PFDA), Perfluorohexane-1-sulfonic acid and its salts (PFHxS), 2.3.3.3-tetrafluoro-2-(heptafluoropropoxy)propionic acid, its salts and its acryl halides (HFPO-DA), Perfluorobutane sulfonic acid (PFBS) and its salts,Ammonium pentadecafluorooctanoate (APFO), Azodicarbonamide (ADCA), Imidazoline-2-thiol, C.I. Direct Red 28, C.I. Direct Black 38, 2-benzotriazol-2-yl-4,6-di-tert-butylphenol (UV-320), 2,4 di-tert butyl-6-(5chlorobenzotriazol-2-yl)phenol (UV-327), 2-(2H-benzotriazol-2-yl)-4,6-ditertpentylphenol (UV-328), 2-(2H-benzotriazol-2-yl)-4-(tert-butyl)-6-(sec-butyl)phenol (UV-350), 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one (Irgacure 907), 2-benzyl-2-dimethylamino-4'morpholinobutyrophenone (Irgacure 369), Benzene-1,2,4-tricarboxylic acid 1,2 anhydride (trimellitic anhydride) (TMA)

G.

Components	C (%)
NP	< 0.0010
NPEO	< 0.010
OP	< 0.010
OPEO	< 0.010
HP	< 0.0010
РТВР	< 0.010
BPA	< 0.010
РТАР	< 0.010
PFOA	< 0.010
PFA's	< 0.010
PFNA	< 0.010
PFDA	< 0.010
PFHxS	< 0.010
HFPO-DA	< 0.010
PFBS	< 0.010
APFO	< 0.010
ADCA	< 0.010
Imidazoline-2-thiol	< 0.010
C.I. Direct Red 28	< 0.010
C.I. Direct Black 38	< 0.010
UV 320	< 0.010
UV 327	< 0.010
UV 328	< 0.010
UV 350	< 0.010
Irgacure 907	< 0.010
Irgacure 369	< 0.010
TMA	< 0.010

Ƴ in

f

0

Determination of the emission profile by thermal extraction.

Date of ending the test Method used	02-06-2020 Centexbel
Sample preparation	One or more 1 cm diameter samples are heated in a glass tube at a fixed temperature under an inert gas flow. The gas flow is lead over a tenax filled tube where volatile organic compounds (VOC's) are trapped. The tenax tube with the VOC's is thermally desorbed. Released VOC's are cryo trapped and injected into a GCMS.
Temperatuur	120°C
Time	30'
Analytical method	Gas chromatography with Agilent MSD detector

Results

As conditions 120°C and 30' were used. These relate to the conditions used eg in VDA 278 to evaluate fogging behaviour of plasticisers. For the more volatile VOC's semi-quantitative results $(\mu g/g)$ can be obtained while for the heavier VOC's and SVOC's it is a screening method for their presence. If present in higher concentrations only part of the products have already evaporated (results as ng/min.g).

Specific screening for substances indicating possible presence of Reach SVHC compounds (16-01-2020)*

The results for the specific substances show that the sample does not contain the compounds^{*} on the Reach candidate list (substances of very high concern), in concentrations >0.1 %. Presence of very low amounts of dibutylphthalate and nonylphenols.

* Anthracene, anthracene oils, anthracene pastes, benzo(a) pyrene, benzo(a)anthracene, fluoranthene, benzo(k)fluoranthene, phenanthrene, pyrene, chrysene, benzo(ghi)perylene, pitch coal tar (high temp), dibutylphthalate (DBP), diisobutylphthalate (DiBP), Bis(2-methoxyethyl) phthalate (DMEP), benzylbutylphthalate (BBP), bis-(2-ethylhexyl)phthalate (DEHP), 1,2-Benzenedicarboxylic acid, di-C6-8-branched alkyl esters, C7-rich (DHIP), 1,2-Benzenedicarboxylic acid, di-C7-11-branched and linear alkyl esters (DHNUP), 1,2-benzenedicarboxylic acid, C6-C8-C10-alkylesters with ≥ 0.3% of dihexyl phthalate (Di(C6-C10)alkylphthalate esters, diisopentylphthalate (DIPP), N-pentylisopentylphthalate, dipenthylphtalate (DPP), dipentylphthalate (branched, linear), dihexylphthalate (DHP), dicyclohexyl phthalate (DCHP), dihexylphthalate (branched, linear), diisohexyl phthalate, Cyclohexane-1,2-dicarboxylic anhydrides (Hexahydrophthalic anhydrides - HHPA), Hexahydromethylphthalic anhydrides (MHHPA), 3-benzylidene camphor;3-BC, 2.2-bis(4'-hydroxyphenyl)-4-methylpentane, 2,4-dinitrotoluene, 2,4-diaminotoluene, 4,4'- Diaminodiphenylmethane (MDA), Formaldehyde- oligomeric reaction products with aniline, o-Anisidine, o-Toluidine, 4,4' -methylenedi-o-toluidine, 2,2'-dichloro-4,4'-methylenedianiline, diamonidiphenylether and its sals, p-aminoazobenzene, p-cresidine, oaminoazotoluene, biphenyl-4-ylamine, 3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine

hexabromocyclododecane (HBCDD), trischloroethylphosphate, trixylylphosphate, Dechlorane Plus, C10-C13 chloroalkanes, Phenolphthalein, musk xylene,formamide, acrylamide, N-methylacetamide, N,N-dimethylacetamide, N,N' -dimethylformamide, 1-methyl-2-pyrrolidone, trichloroethylene, 1,2,3-trichloropropane, 1,2-dichloroethane, 1-bromopropane, 1,2-Diethoxyethane, EGDME, TEGDME, bis(2-methoxyethyl) ether, Furan, propylene oxide, 2-methoxyethanol, 2-ethoxyethanol, 2-ethoxyethylacetate, 2-methoxyethyl acetate, 4-(1,1,3,3tetramethylbutyl)phenol, 4-Nonylphenol (branched+linear), Dinoseb, TGIC, β -TGIC, Michler's ketone, Michler's base, C.I. Basic Violet 3, C.I. Solvent Blue 4, C.I. Basic Blue 26, 4,4'-bis(dimethylamino)-4"-(methylamino) trityl alcohol, methoxyacetic acid, dimethylsulphate, diethylsulphate, 1,3-propanesultone, nitrobenzene, karanal, octamethylcyclotetrasiloxane(D4), decamethylcyclopentasiloxane(D5),

dodecamethylcyclohexasiloxane(D6), terphenyl; hydrogenated, ethylenediamine(EDA), Bistributyltinoxide is detected along with the inorganic

compounds using XRF

A2002717	T2009895	Solar Screen International S.A., Foetz U19			
Group	MReach		Apparatus Gerstel		
	Requested	CAS	tR min	ng/min.g	μg/g (30', 120°C)
X263	Dibutylphthalate (DBP)	84-74-2	37,26	345,4	10,4
X287	Diisobutylphthalate (DiBP)	84-69-5	35,58	-	-
X314	Benzylbutylphthalate (BBP)	85-68-7	46,71	-	-
X288	Bis-(2-ethylhexyl)phthalate (DEHP)	117-81-7	54,50	13,7	<5
X361	Di-n-heptyl phthalate	3648-21-3	54,29	-	-
X334	C6-C8 phthalates, C7 rich (DHIP)	71888-89-6	48,90	-	-
X335	C7-C11 phthalates (DHNUP)	68515-42-4	60,40	-	-
X349	Bis(2-methoxyethyl)phthalate (DMEP)	117-82-8	37,66	-	-
X389	Diisopentylphthalate (DiPP)	605-50-5	39,47	-	-
X390	Dipentylphthalate (DPP)	131-18-0	41,24	-	-
X391	N-pentylisopentylphthalate	776297-69-9	40,32	-	-
X371	Dipentylphthalate isomers	'84777-06-0	37,97	-	-
X408	Dihexylphthalate (DHP)	84-75-3	45,60	-	-
X557	Diisohexyl phthalate	71850-09-4	44,45	-	-
X409	Dihexylphthalates, branched+linear	68515-50-4	43,87	-	-
X417	Di(C6-C10)alkyl phthalate >0.3%DHP	68515-51-5	45,72	-	-
X418	Di(C6/C8/C10)alkyl phthalate >0.3%DHP	68648-93-1	45.75	-	-
X526	Dicyclohexylphthalate	84-61-7	53,60	-	-
X369	Hexahvdrophthalic anhydrides	85-42-7	23.68	-	-
X392	Hexahydromethylphthalic anhydrides	25550-51-0	25,30	-	-
X286	Phenanthrene	85-01-8	34,30	-	-
X315	Anthracene	120-12-7	34.53	-	-
X353	Fluoranthene	206-44-0	39,73	-	-
X285	Pyrene	129-00-0	40,90	-	-
X354	Chrysene	218-01-9	51.81	-	-
X355	Benz(a)anthracene	56-55-3	51,44	-	-
X356	Benzofalpyrene	50-32-8	61,19	-	-
X531	Benzo[k]fluoranthene	207-08-9	59.35	-	-
X532	Benzolahilberylene	191-24-2	72.86	-	-
X336	Pitch, coal tar, high temp	65996-93-2	40,40	-	-
X313	Short chain chlorinated paraffins	85535-84-8	31,15	-	-
X528	Terphenyl, hydrogenated (cluster)	61788-32-7	38.47	-	-
X278	TCEP (tri(2-chloroethyl)phosphate)	115-96-8	33.07	-	-
X410	Trixylylphosphate	25155-23-1	57.05	-	-
X319	Hexabromocyclododecane	3194-55-6	59.00	-	-
X419	Dechlorane plus	13560-89-9	53 50	-	-
X529	1.7.7-trimethyl-3-(phenylmethylene)bicyclo[2.2.1]heptan-2-one	15087-24-8	37,11	-	-
X347	4-(1.1.3.3-Tetramethylbutyl)phenol	140-66-9	30.76	-	-
X367	4-Nonviphenol (cluster)	104-40-5	33 27	494 3	14 8
X330	Formamide	75-12-7	6.21		
X221	Dimethylformamide (DME)	68-12-2	8.07	-	-
H110	N-methyl-2-pyrrolidone	872-50-4	15 72	-	_
1121	Acrylamide	79-06-1	10.32	_	_
X380	N-methylacetamide	79-16-3	9 14	-	-
X233	N N-Dimethylacetamide	127-19-5	10.69	-	-
X527	Ethylenediamine	107-15-3	5.63	_	_
/ 10 C			0,00		

in f

0

<10

25,22

<5

Solar Screen International S.A., Foetz

U19

540-97-6

Group	MReach2			Apparatus Ge	rstel
	Requested	CAS	tR min	ng/min.g (3)	µg/g 0', 120°C)
X387	o-Toluidine	95-53-4	17,24	-	-
X381	p-Cresidine	120-71-8	22,82	-	-
X382	4-Aminoazobenzene	60-09-3	39,49	-	-
X383	4,4'-Methylenedi-o-toluidine	838-88-0	44,72	-	-
X384	2,4-Diaminotoluene	95-80-7	25,24	-	-
X385	o-Aminoazotoluene	97-56-3	44,28	-	-
X386	Biphenyl-4-ylamine	92-67-1	33,37	-	-
X343	o-Anisidine	90-04-0	20,10	-	-
X317	2,4-Dinitrotoluene	121-14-2	28,43	-	-
X318	5-Tert-butyl-2,4,6trinitro-m-xylene (musk xylene)	81-15-2	35,65	-	-
X311	4,4'-Diaminodiphenylmethane	101-77-9	40,22	-	-
X344	2,2'-Dichloro-4,4'-methylenedianiline	101-14-4	51,05	-	-
X342	Formaldehyde/aniline oligomeric react prods	25214-70-4	39,65	-	-
X388	4,4'-Oxydianiline and its salts	101-80-4	39,88	-	-
X393	Zoldine MS+ (3-ethyl-2-methyl-2-(3-methylbutyl)-1,3-oxazolidine)	143860-04-2	7,05	-	-
X556	2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one	71868-10-5	44,70	-	-
X370	Dinoseb	88-85-7	34,70	-	-
X372	Methoxyacetic acid	625-45-6	9,22	-	-
X345	1,2-Dichloroethane	107-06-2	5,48	-	-
A143	Trichloroethylene	79-01-6	6,73	-	-
A144	1,2,3-Trichloropropane	96-18-4	12,39	-	-
X374	1-Bromopropane	106-94-5	5,23	-	-
X376	1,2-Diethoxyethane	629-14-1	9,31	-	-
X394	Propylenoxide	75-56-9	6,05	-	-
X331	2-Methoxyethanol	109-86-4	5,30	-	-
X332	2-Ethoxyethanol	110-80-5	6,91	-	-
1107	2-Ethoxyethylacetate	111-15-9	12,17	-	-
X558	2-Methoxyethyl acetate	110-49-6	10,12	-	-
X348	Bis(2-methoxyethyl)ether	111-96-6	13,60	-	-
X360	1,2-Bis(2-methoxyethoxy)ethane	112-49-2	21,55	-	-
X362	1,2-Dimethoxyethane	110-71-4	5,75	-	-
X377	Furan	110-00-9	3,85	-	-
X378	Diethyl Sulphate	64-67-5	14,85	-	-
X379	Dimethyl Sulphate	77-78-1	10,36	-	-
X346	Phenolphtalein	77-09-8	45,35	-	-
X366	TGIC	2451-62-9	46,30	-	-
X364	Michlers' ketone	90-94-8	60,59	-	-
X365	Michlers' base	101-61-1	46,98	-	-
X363	β-TGIC	59653-74-6	45,20	-	-
X415	1,3-Propanesultone	1120-71-4	18,50	-	-
X416	Karanal	117933-89-8	34,33	-	-
X530	2,2-bis(4'-hydroxyphenyl)-4-methylpentane	6807-17-6	48,03	-	-
X340	Nitrobenzene	98-95-3	17,47	-	-
D209	Octamethylcyclotetrasiloxane	556-67-2	16,03	68,3	<5
I110	Decamethylcyclopentasiloxane	541-02-6	20,71	-	-

in f

0

A2002717 T2009895

Dodecamethylcyclohexasiloxane

H119

Determination of the emission profile by thermal extraction.

Date of ending the test Method used	02-06-2020 Centexbel
Sample preparation	One or more 1 cm diameter samples are heated in a glass tube at a fixed temperature under an inert gas flow. The gas flow is lead over a tenax filled tube where volatile organic compounds (VOC's) are trapped. The tenax tube with the VOC's is thermally desorbed. Released VOC's are cryo trapped and injected into a GCMS.
Analytical method	Gas chromatography with Agilent MSD detector
Results	
Determination limit	0.1 mg/kg (when no overlapping peaks are present lower determination limits can easily be reached)
Identification	For dimethyl fumarate specific ion with mass 113 is used. For positive identification masses 85 and 59 are used.

As conditions 120°C and 30' were used. These relate to the conditions used eg in VDA 278 to evaluate fogging behaviour of plasticisers. For the more volatile VOC's semi-quantitative results $(\mu g/g)$ can be obtained while for the heavier VOC's and SVOC's it is a screening method for their presence. If present in higher concentrations only part of the products have already evaporated (results as ng/min.g).

	Amount emitted (µg/g)
DMFu	< 0.10