

CERTIFICATE

Material Fire Test Certificate

IGNL-3163-07-05

 Date of Test
 30-Oct-19

 ISSUED
 18-Nov-19

 EXPIRY
 30-Oct-24

AS/NZS 3837:1998 Method of test for heat and smoke release rates for materials and products using an oxygen consumption calorimeter

> PRESENTED TO 3M Australia

Building A, 1 Rivett Rd North Ryde, NSW www.3m.com

TEST BODY

Ignis Labs Pty Ltd
ABN 36 620 256 617
PO Box 5174
Braddon ACT 2612
www.ignislabs.com.au
(02) 6111 2909

Specimen Identification

3M DI-NOC Architectural finish

Specimen Description

The sponsor described the tested specimen as:

Self adhesive decorating film with the nominal composition being PVC

Test Method

Three (3) specimens were tested in accordance with the requirements of AS/NZS 3837 $\,$

Observations

Due to the thin nature of the specimens, the burning behaviour and resultant heat release rates were inconsistent between the tested specimens.

Input

Test Heat Flux (kW/m²)	50.0							
		Sp 1	Sp 2	Sp 3	Sp 4	Sp 5	Sp 6	Mean
Thickness (mm)		6.46 -		6.44 -		6.33 -		6.41
Surface Area (m²)	A_s	0.00884 -	0.0088 -		0.00884 -		0.00884	
Mass before the Test (g)	m _i	88.1299 -	86.476 -		84.7207 -		86.4421	
Mass after the Test (g)	\mathbf{m}_{f}	80.9603 -	84.157 -		79.9976 -		81.7049	
Time to Ignition (sec)	t_{ig}	29 -	40 -		40	-	36.3333	
Test start time (sec)	t _{start}	0 -	-	0 -	-	0	-	0

Density (kg/m³)	ρ	15	43.26 -	1519 -	1514.03 -	1525.43
Irradiance (kW/m²)	50.3 -			50.63 -	50.38 -	50.4367
Exhaust System Flow Rate (m³/sec)			0.024 -	0.024 -	0.024 -	0.024
Mass Loss (kg/m²)	0.81104 -			0.2623 -	0.53429 -	0.53588
Average rate of Mass Loss per unit area (g/m ² .s)	5.96349 -			1.9148 -	3.89989 -	3.92606
Total Mass Pyrolyzed (%)		8.13521 -		2.6817 -	5.57488 -	5.46392
Time to 50kW/m² (sec)	t ₅₀	-	•	36.491 -		36.4907
Ignitability Index (1/min)	I _{ig}	60/(t ₅₀ -t _{sta} -	•	1.6443 -		1.64425
Test duration (sec)			165 -	177 -	177 -	173

(,					
Peak Rate of Heat Release (0-60s)		46.5484 -	63.268 -	29.2077 -	46.3415
Peak Rate of Heat Release (0-180s)		46.5484 -	63.268 -	29.2077 -	46.3415
Peak Rate of Heat Release (0-300s)		46.5484 -	63.268 -	29.2077 -	46.3415
Average Rate of Heat Release (0-60s)		12.9427 -	33.551 -	-1.6414 -	14.9509
Average Rate of Heat Release (0-180s)		7.80649 -	12.967 -	5.30473 -	8.69287
Average Rate of Heat Release (0-300s)		7.80649 -	12.967 -	5.30473 -	8.69287
Total Heat Released (MJ/m²)		0.25635 -			0.25635
Average Effective Heat of Combustion (MJ/kg)	$\Delta h_{c,eff(avg)}$	1.58936 -	12.814 -	-0.7424 -	4.55373
Average Specific Extinction Area (m²/kg)	$\sigma_{f(avg)}$	186.561 -	369.93 -	216.827 -	257.771

Rate of Heat Release Index (m=0.34)	I _{Q1}	-	-	898.06 -	-	-	898.061
Rate of Heat Release Index (m=0.93)	I_{Q2}	-	-	202.12 -	-	-	202.12
Integral Limit at 10 min	I _{Q, 10 min}	6800 - 540 I _{ig} _	-	5912.1 -	-	-	5912.1
Integral Limit at 2 min	I _{Q, 2 min}	2475 - 165 I _{ig} -	-	2203.7 -	-	-	2203.7
Integral Limit at 12 min	I _{Q, 12 min}	1650 - 165 I _{ig} -	-	1378.7 -	-	-	1378.7

Result

BCA Group Classification Prediction

Benjamin Hughes-Brown FLEAust CPEng NER APEC Engineer IntPE(Aust)

Chartered Professional Engineer
CPEng, NER (Fire Sately / Men.) 2590091, RPEQ11498, BPB-C10-1875, EF-39394,
MFireSafety (MWS), Benn (UTS), GradDipBushFire (UWS), DipEngPrac (UTS), DipEng (CIT)

Version:

Issue 04 Revision 02 | 29.10.2019

Disclaimer

These test results relate only to the behaviour of the test specimens of the material under the particular conditions of the test, and they are The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information. Copyright ©

All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any

